A NOVEL CARBON-CARBON BOND FORMATION BY THE LEWIS ACID CATALYZED REACTION OF β -STYRYLSILANE WITH ACETAL

Toshikazu HIRAO,^{*} Shuichiro KOHNO, Jun ENDA, Yoshiki OHSHIRO, and Toshio AGAWA Department of Petroleum Chemistry, Faculty of Engineering, Osaka University 2-1 Yamada-oka, Suita, Osaka 565, Japan

Summary: Treatment of (E)- and (Z)- β -styryltrimethylsilanes with benzaldehyde, diethyl acetal in the presence of Lewis acid affords selectively 1,3,5-tri-phenyl-(E,E)- and (E,Z)-1,4-pentadienes, respectively.

Vinylsilanes have been known as useful synthetic intermediates, undergoing stereospecific as well as regioselective attack of electrophiles to provide a simple procedure for a novel carbon-carbon bond formation,¹ though electrophiles are limited to acid chloride^{1a,b} and α -chloro ether.^{1b-e} We now report the Lewis acid catalyzed reaction of β -styryltrimethylsilanes with benzaldehyde diethyl acetal to afford 1,4-pentadiene derivatives.

Treatment of (E)- β -styryltrimethylsilane with benzaldehyde diethyl acetal in the presence of 0.8 equiv. of MoCl₅ per mol of the styrylsilane gave only the 2:1 adduct, 1,3,5-triphenyl-(E,E)-1,4-pentadiene. A satisfactory result was

also obtained when 0.5 equiv. of $MoCl_5$ was used. The results are shown in Table 1. A typical experimental procedure is as follows; to a suspension of $MoCl_5$ (0.187 g, 1.0 mmol) in dichloromethane (4 ml), (E)- β -styryltrimethylsilane (0.352 g, 2.0 mmol) in dichloromethane (2 ml) and then benzaldehyde diethyl acetal (0.360 g, 2.0 mmol) were added dropwise at -78°C. The mixture was stirred at -78°C for 2.5h and the reaction temperature was raised to -20°C for 1.5h, followed by the addition of 1:1 mixture of methanol-water (2 ml) at -20°C. Saturated aqueous solution of sodium carbonate (2 ml) was added to the mixture, which was subsequently extracted with ether (10 ml). The extract was concentrated and chromatographed on a silica gel column eluting with benzene-hexane (1:10) to yield 1,3,5-triphenyl-(E,E)-1,4-pentadiene $(1a)^2$ (0.181 g, 61%). The use of WCl₆ instead of MoCl₅ reduced the yield of 1a. TiCl₄, which is a popular catalyst for the Lewis acid catalyzed reaction of ally1silane with acetal,³ was found to be less effective than MoCl₅ even if the reaction was carried out at the same conditions as mentioned above. BF₃·OEt₂ acted effective-ly only when reaction temperature was raised.

In the MoCl₅-catalyzed reaction of (Z)- β -styryltrimethylsilane with benzaldehyde diethyl acetal, 1,3,5-triphenyl-(E,Z)-1,4-pentadiene (1b)⁴ was produced selectively. The selectivity was lowered when BF₃·OEt₂ was used instead of MoCl₅.

p-Chlorobenzaldehyde diethyl acetal reacted with (E)- β -styryltrimethylsilane in the presence of MoCl₅ to give two isomers, 1c and 1d,⁵ in which the p-chlorophenyl group was substituted at the different positions.

The plausible reaction path is shown in Scheme 1. (E)- β -Styryltrimethylsilane undergoes the electrophilic attack of the carbonium ion 2 to form the carbonium ion 3, regioselectively, due to the stabilizing ability of the neighboring Si-C bond. The trimethylsilyl group is removed, followed by elimination of the ethoxy group by Lewis acid to give the allylic cation 4. The reaction of 4 with (E)- β -styryltrimethylsilane occurs stereospecifically to produce the (E,E)-1,4-pentadiene 1a. In the case of (Z)- β -styryltrimethylsilane, a similar addition-elimination sequence takes place to give the same

Styrylsilane Acetal		Lewis acid (equiv.)		Reaction Temp. Time		Products	Yield(%)
Ph SiMe ₃	PhCH(OEt) ₂	MoCl ₅	0.25 0.5 0.8 0.5 ^a	-78⊶-20°)	4h	Ph Ph Ph	50 61 62 46
		WC16	0.5	-78⊶-20°	4h		34
		TiCl ₄	1.0	-78°	4h		11
		BF3.0Et2	1.0	room temp	.24h		59
Ph SiMe_3	ArCH(OEt) $_2^{b}$	MoCl ₅	1.0	-78 ⊶ -20°	4h	Ph Ph Ph Ar Ph	Ar ´ 66
Ph SiMe ₃	PhCH(OEt) ₂	MoC15	0.6	-78°20°	4h	Ph Ph Ph Ph	Ph 69 (98:2)
		BF3·OEt2	1.0	room temp	.24h		78 (91:9)

Table 1. Reaction of β -Styrylsilanes with Acetal

a) 0.5 equiv. of acetal per mol of β -styrylsilane was used. b) Ar: p-Cl-C_6^H_4

allylic cation 4, which is subjected to stereospecific reaction with (Z)- β -styryltrimethylsilane. The introduction of the p-chlorophenyl group in either 1 or 3 position of the 1,4-pentadiene is explained by the intervention of an unsymmetrical allylic cation.

Scheme 1

(E)- β -Styryltrimethylsilane reacted with isobutyraldehyde diethyl acetal in the presence of TiCl₄ in dichloromethane at room temperature for 72 h to

give the 1:1 adduct, 1-phenyl-4-chloro-4-methyl-(E)-1-pentene (le) in 46% yield. MoCl₅, however, is not effective for the present reaction. The chloride le was formed by the abstraction of the chlorine atom from $TiCl_4$.

Acknowledgment: This work was carried out with Grant-in-aid for Scientific Research No. 543025 from the Ministry of Education.

References and Notes

- 1 a) I. Fleming and A. Pearce, Chem. Commun., 633 (1975).
 - b) J. P. Pillot, J. Dunogues, and R. Calas, <u>Bull. Soc. Chim. Fr</u>., 2143 (1975).
 - c) T. H. Chan, P. W. K. Lau, and W. Mychajlowskij, <u>Tetrahedron Lett</u>., 3317 (1977).
 - d) K. Yamamoto, O. Nunokawa, and J. Tsuji, Synthesis, 721 (1977).
 - e) K. Yamamoto, J. Yoshitake, N. T. Qui, and J. Tsuji, <u>Chem. Lett</u>., 859 (1978).
 - f) T. H. Chan and I. Fleming, Synthesis, 761 (1979).
- 2) la: IR (neat) 1640, 955 cm⁻¹; ¹H-NMR (CDCl₃) 64.32 (quintet, 1H, J=2.8 Hz), 6.42 (d, 4H, J=2.8 Hz), 7.08-7.33 (m, 15H); MS m/e 296 (M⁺). Two kinds of phenyl groups were observed in the ¹³C-NMR spectrum.
- T. Mukaiyama, <u>Angew. Chem.</u>, <u>89</u>, 858 (1977); <u>Angew. Chem.</u>, Int. Ed. Engl.,
 <u>16</u>, 817 (1977); A. Hosomi and H. Sakurai, <u>Tetrahedron Lett.</u>, 1295 (1976).
- 4) 1b: IR (neat) 1640, 1400, 965 cm⁻¹; ¹H-NMR (CDCl₃) 64.74 (dd, 1H, J=3.2, 9.8 Hz), 5.80 (dd, 1H, J=9.8, 11.4 Hz), 6.34 (dd, 1H, J=3.2, 19.2 Hz), 6.40 (d, 1H, J=19.2 Hz), 6.56 (d, 1H, J=11.4 Hz), 7.00-7.40 (m, 15H); MS m/e 296 (M⁺). Three kinds of phenyl groups were observed in the ¹³C-NMR spectrum.
- 5) The existence of $\underset{\sim}{1c}$ and $\underset{\sim}{1d}$ was supported by the ¹³C-NMR spectrum, but the ratio was not determined because it was difficult to separate each of them. (Received in Japan 4 July 1981)